

J. Med. Chem. **2009**, *52*, 5069–5075 **5069** DOI: 10.1021/jm900634w

14,15-Epoxyeicosa-5,8,11-trienoic Acid (14,15-EET) Surrogates Containing Epoxide Bioisosteres: Influence upon Vascular Relaxation and Soluble Epoxide Hydrolase Inhibition

J. R. Falck,*,† Ravinder Kodela,† Rajkumar Manne,† Krishnam Raju Atcha,† Narender Puli,† Narsimhaswamy Dubasi,† Vijay L. Manthati,† Jorge H. Capdevila,‡ Xiu-Yu Yi, Daniel H. Goldman, Christophe Morisseau,§ Bruce D. Hammock,§ and William B. Campbell

[†]Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, [‡]Departments of Medicine and Biochemistry, Vanderbilt University Medical School, Nashville, Tennessee 37232, [§]Department of Entomology and Cancer Center, University of California, One Shields Avenue, Davis, California 95616, and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226

Received May 13, 2009

All-cis-14,15-epoxyeicosa-5,8,11-trienoic acid (14,15-EET) is a labile, vasodilatory eicosanoid generated from arachidonic acid by cytochrome P450 epoxygenases. A series of robust, partially saturated analogues containing epoxide bioisosteres were synthesized and evaluated for relaxation of precontracted bovine coronary artery rings and for in vitro inhibition of soluble epoxide hydrolase (sEH). Depending upon the bioisostere and its position along the carbon chain, varying levels of vascular relaxation and/or sEH inhibition were observed. For example, oxamide **16** and *N-i*Pr-amide **20** were comparable (ED₅₀ 1.7 μ M) to 14,15-EET as vasorelaxants but were approximately 10–35 times less potent as sEH inhibitors (IC₅₀ 59 and 19 μ M, respectively); unsubstituted urea **12** showed useful activity in both assays (ED₅₀ 3.5 μ M, IC₅₀ 16 nM). These data reveal differential structural parameters for the two pharmacophores that could assist the development of potent and specific in vivo drug candidates.

Introduction

The oxidative metabolism of polyunsaturated fatty acids by the cytochrome P450 branch of the eicosanoid cascade generates, inter alia, one or more regioisomeric epoxides. The best studied of these epoxanoids is all-cis-14,15-epoxyeicosatrienoic acid (14,15-EET^a), which is derived from arachidonic acid and ascribed an impressive array of cardiovascular, pulmonary, renal, and CNS roles.² Activation of a guanine nucleotide-binding protein (G-protein) is thought to play a pivotal role in many of the responses to 14,15-EET and often involves ADP-ribosylation of the G_sα subunit. For instance, opening of vascular calcium-sensitive potassium channels by 14,15-EET is completely thwarted by guanosine 5'-O-(2thio)diphosphate, a G-protein inhibitor, or by an antibody against $G_s \alpha$. A reversible and abundant high-affinity binding site for 14,15-EET and its analogues has been identified⁴ and shown to preferentially recognize the 14(R), 15(S)-enantiomer. ⁵ The kinetic parameters of this binding site share many characteristics in common with the canonical prostanoid and leukotriene receptors, e.g., K_d values in the low nanomolar range; 4 however, characterization of the putative EET receptor at the molecular level has been elusive. 6,7

14,15-EET, in common with most eicosanoids,⁸ is chemically and metabolically labile (Figure 1).⁹ Further transformations by enzymes of the cascade,¹⁰ esterification,¹¹

conjugation, $^{12}\beta$ -oxidation, 13 chain elongation, and hydration by soluble epoxide hydrolase 14 (sEH) are well documented as inactivation or catabolic processes for 14,15-EET. The latter, in particular, appears to play a major role in regulating the intracellular levels of 14,15-EET, 15 whose in vivo half-life has been estimated as a few seconds to minutes. 16 Additionally, the proclivity of 14,15-EET toward auto-oxidation, a consequence of the 1,4-dienyl moieties present along the backbone, 17 introduces a further layer of complication and often necessitates storage and/or handling under an inert atmosphere. 9 Hence, a wide variety of factors combine to trammel the study of 14,15-EET and limit its potential therapeutic applications.

Structure-activity studies in the Falck and Campbell laboratories have addressed some of these limitations and led to the introduction of partially saturated 14,15-EET agonist analogues that obviate or minimize secondary metabolism as well as auto-oxidation. ^{18,19} More recently, Hammock and colleagues have pioneered soluble epoxide hydrolase inhibition (sEHi) as an alternative, albeit indirect, strategy for pharmacological intervention in EET-dependent events.²⁰ This approach ostensibly²¹ prolongs the eicosanoid's half-life, thereby elevating steady state levels of endogenous EETs as well as other epoxides. From an artful series of studies, lipophilic 1,3-disubstituted ureas emerged as especially efficacious in vitro and in vivo sEH inhibitors.²⁰ Advanced members of this genre show promise as first-in-class therapeutics for a variety of diseases including diabetes, inflammation, and hypertension.²² In the present studies, we sought to develop and evaluate chimeric analogues that combine the more robust backbone of the partially saturated EET mimics with

^{*}To whom correspondence should be addressed. Phone: 214-648-2406. Fax: 214-648-6455. E-mail: j.falck@utsouthwestern.edu.

^a Abbreviations: 14,15-EET, *cis*-14,15-epoxyeicosa-5(*Z*),8(*Z*),11(*Z*)-trienoic acid; sEH, soluble epoxide hydrolase; sEHi, soluble epoxide hydrolase inhibition; VR, vascular relaxation.

Table 1. Vasorelaxation of Precontracted Bovine Coronary Artery and in Vitro Inhibition of Recombinant Human Soluble Epoxide Hydrolase a.b.

. Vasorelaxation of Precontracted Bovine Coronary Artery and in Vitro Inhibition of Recombinant Human Soluble Epoxide Hydroxide Hydroxide Coronary Artery and in Vitro Inhibition of Recombinant Human Soluble Epoxide Hydroxide Coronary Artery and in Vitro Inhibition of Recombinant Human Soluble Epoxide Hydroxide Coronary Artery and in Vitro Inhibition of Recombinant Human Soluble Epoxide Hydroxide Coronary Artery and in Vitro Inhibition of Recombinant Human Soluble Epoxide Hydroxide Coronary Artery and Inhibition of Recombinant Human Soluble Epoxide Hydroxide Coronary Artery and Inhibition of Recombinant Human Soluble Epoxide Hydroxide Coronary Artery and Inhibition Of Recombinant Human Soluble Epoxide Hydroxide Coronary Artery and Inhibition Of Recombinant Human Soluble Epoxide Hydroxide Coronary Artery and Inhibition Of Recombination Coronary Artery A									
		Vascular		<u>SEHi</u>			Vascular I		<u>sEHi</u>
Comp	d Analog	% (10 μM)	EC ₅₀ (μΜ)	IC ₅₀ (nM)	Compd	Analog	% (10 μM)	EC ₅₀ (μΜ)	IC ₅₀ (nM)
1	0 CO ₂ H	63	7.5	46	15	O N N N H H O O H	87	3.7	1374
2	O CO ₂ H	59	7.6	71.5	16	CO ₂ H	89	1.7	58712
3	O CO ₂ H	88	3.2	1451	17	O Me O CO ₂ H	70	4.4	17622
4		83	3.2	8484	18	O CO ₂ H	64.5	6.1	79
5	S CO211	99	1.5	770	19	O CO ₂ H	64.5	4.3	11194
6	NO CO2H	64	8.3	2834	20	Me CO ₂ H	100	1.7	10712
7	ON CO ₂ H	53	9.3	3480	21	N CO ₂ H	69	5.7	272
8	O CO ₂ H	29	>10	48.5	22		74	4.9	66
9	O CO ₂ H	62	3.1	43	23	Me CO ₂ H	12	>10	13877
10	O CO ₂ H	66	5.6	793	24	CO ₂ No	65	6.2	17755
11	CO ₂ H	77.5	2.3	11064	25	CO ₂ H	11	>10	7147
12	NIVE WIFE CO ₂ H	86	3.5	16	26	CO ₂ M	e 33	>10	688
13	H H H CO ₂ H	84	4.6	152	27	CO ₂ H	16	>10	1355
14	O CO ₂ H	50	>10	2596	28	CO ₂ H O N N H H	46	>10	8110

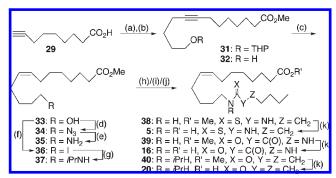
 a At 10 mM, 14,15-EET induces 85% of maximum vasorelaxation and its ED₅₀ is 2.2 μ M. For recombinant human sEH, the IC₅₀ for 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA) is 3 nM. b Bioassay determinations (n) = 3–5.

Figure 1. Metabolism/Degradation of 14,15-EET.

potential epoxide bioisosteres^{23,24} capable of functioning as stable 14,15-EET surrogates and/or as inhibitors of soluble epoxide hydrolase.²⁵

Results and Discussion

Drawing inspiration from the aforementioned studies, analogue 1 was deemed a suitable point of departure for our investigation. Notably, 1 contains several key structural features, inter alia: (i) a partially saturated carbon backbone to avoid auto-oxidation and LOX metabolism, (ii) a cis- $\Delta^{8.9}$ -olefin thought to be essential for EET agonist activity, and (iii) a sEH-resistant 1,3-disubstituted urea that we anticipated would function as a surrogate for the $\Delta^{14,15}$ -epoxide. It was, thus, gratifying to find 1 mimics, albeit modestly, 14,15-EET as a vasorelaxant of precontracted bovine coronary artery rings (Table 1). Additionally, 1 proved to be a low nanomolar inhibitor of recombinant human sEH. Methylation of the proximal urea nitrogen of 1 provided 2 but had little influence


upon the vascular properties; as anticipated, methylation dramatically attenuated sEHi activity.²⁰ On the other hand, N-methylation of the distal urea nitrogen gave rise to regioisomer 3 and significantly improved EET mimicry while sEHi activity degraded sharply. The differences between these Nmethylated regioisomers for sEHi are similar to the differences observed previously with amide regioisomers. 15 Substitution of both nitrogens as in 4 did not prove additive with respect to VR but did further exacerbate the loss of sEHi. These data were the first convincing indications that EET agonist activity and sEHi could be at least partially differentiated in this compound series. Such differences may also be indicative of restricted orientation in the putative EET and sEH binding sites; further evidence can be found later in the series, e.g., Nmethylated amides 19 and 23. A lesser level of discrimination between the two activities could also be achieved by heteroatom replacement.²⁰ Thiourea 5 was equipotent with 14,15-EET across the entire concentration range of the vascular assay, while sEHi declined by a factor of 16 with respect to 1. On the other hand, replacement of either urea nitrogen with oxygen, i.e., 6 and 7, had relatively little influence on vessel tension but did blunt sEHi. In light of these data, it is tempting to speculate that hydrogen bonding or coordination to a metal center (e.g., Cu²⁺, Fe²⁺, or Zn²⁺) might be an important contributor to binding at the putative EET vascular receptor.

We next turned our attention to the olefinic moiety and found vascular activity was diminished in trans-olefin 8 but not acetylene 9. Accommodation of a linear carbon chain or one that is bent in the natural cis-configuration, but not transgeometry, is consistent with a shallow binding pocket for this portion of the molecule. For sEHi, both 8 and 9 retained their low nanomolar potencies and were almost identical with that of the benchmark 1. Relocation of the *cis*-olefin to $\Delta^{5,6}$ of the carbon chain (analogue 10) only modestly perturbed EET agonist activity and not at all for the related acetylene 11. This is unexpected given the regiodependency observed ^{18b} in allied systems, e.g., cis-14,15-epoxy-eicosa-8(Z)-enoic acid is a 14,15-EET agonist while cis-14,15-epoxy-eicosa-5(Z)-enoic acid functions as a competitive antagonist. The dramatic slide in sEHi for 11, sans N-H, is consistent with established SAR for this pharmacophore. ²⁰ Shifting the urea one position right (analogue 12) or left (analogue 13) relative to its placement in 1 improved VR with respect to 1, whereas displacement (accompanied by the cis-olefin) two positions further from the carboxylate, resembling an ω -3 fatty acid, was counterproductive (analogue 14), thus it is difficult to discern a trend in the series $12 \rightarrow 1 \rightarrow 13 \rightarrow 14$ correlating urea chain position and VR. On the other hand, the IC₅₀ for sEHi declined steadily following the same series. This appears generally consistent with the proposal²⁰ that "one hydrophobic group should be present on each side of the urea" and confirmed indications that a six-carbon *n*-alkyl chain is sufficient for low nanomolar inhibition.²⁰

Bioisosteric epoxide replacement by N-hydroxyurea and 1,4-oxamide led to **15** and **16**, respectively, both of which showed acceptable VR at $10 \,\mu\text{M}$. The latter was distinguished by a somewhat better ED₅₀, yet its IC₅₀ for sEHi was more than 3 orders of magnitude greater than **1**. In contrast to the outcome from conversion of **1** into **4**, the N,N'-dimethylation of **16** to give **17** reduced its ability to relax the vessel while simultaneously moderating the loss of sEHi seen with **16**.

The regioisomeric amide bioisosteres **18** and **22** displayed potentially useful sEHi activities but were lackluster EET mimics. The analogous *N*-methylated derivatives **19** and **23**,

Scheme 1. Synthesis of Representative Analogues^a

^aReagents and conditions: (a) *n*-BuLi, THF/HMPA (4:1), −78 to 0 °C, 2 h, then **30**, −78 to 23 °C, 12 h; (b) *p*-MeC₆H₄SO₃H (cat), MeOH, 23 °C, 12 h, 55% (2 steps); (c) Ni(OAc)₂/NaBH₄/H₂NCH₂CH₂NH₂, H₂, EtOH, 23 °C, 1 h, 90%; (d) Ph₃P/DEAD/DPPA, THF, −20 to 23 °C, 4 h, 65%; (e) Ph₃P, THF/H₂O, 23 °C, 12 h; (f) Ph₃P/I₂, THF, 0 °C, 1 h, 83%; (g) *i*-PrNH₂/K₂CO₃, THF, 80 °C, 12 h, 70%; (h) **35**/*n*-pentylisothiocyanate, THF, 23 °C, 12 h, 70%; (i) **35**/HOC(O)C(O)NHC₄H₉/HATU, CH₂Cl₂, 23 °C, 12 h, 76%; (j) **37**/EDCI/*n*-heptanoic acid, DMF, 23 °C, 12 h, 77%; (k) LiOH, THF/H₂O, 23 °C, 12 h, 90−95%.

respectively, as well as acetylene 21, lost potency except for a small improvement in the EC₅₀ of 19. sEHi by N-isopropyl 20 was likewise depressed, but the trend toward a more robust response in the vascular assay portended in 19 was clearly evident in this example. Whether the enhancement can be attributed to a hydrophobic binding pocket remains unclear at present.

A selection of nitrogen and oxygen heterocyclic bioisosteres, viz, triazole **24**, furan **25**, and 2-oxazoline **26**, were prepared based upon the template in **1**. They did not appear to offer any pharmacological advantage and were not pursued further. The loss of both VR and sEHi activities in the tetranor-ureas **27** and **28** is noteworthy given prior reports that chain-shortened 14,15-EETs retain much of their biological activity in the vasculature. Formally, **27** and **28** can be envisioned as arising from **1** and **9**, respectively, via two cycles of β -oxidation. It will be of interest to determine if this is also a significant route of inactivation in vivo for the EET surrogates identified in this study.

Chemistry. The syntheses of thiourea 5, oxamide 16, and Nisopropylamide 20 are summarized in Scheme 1 and are representative of the methodology used to prepare the other analogues. Following literature precedent, ²⁸ the dianion of commercial non-8-ynoic acid (29) was alkylated with 1 equiv of 2-(4-bromobutoxy)-tetrahydro-2*H*-pyran²⁹ (30) in THF/ HMPA (4:1). The resultant disubstituted acetylene 31 gave rise to alcohol 32 following acidic hydrolysis in methanol. Semihydrogenation over P-2 nickel created cis-olefin 33 that was subjected to azidation using diphenylphosphoryl azide (DPPA) under Mitsunobu conditions. Staudinger reduction of the product, azide 34, led to primary amine 35. Reaction of the latter with n-pentylisothiocyanate or a combination of 2-(butylamino)-2-oxoacetic acid³⁰ and 2-(7-aza-1*H*-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) was unremarkable and furnished thiourea 38 and oxamide 40, respectively. Alternatively, 33 was converted with Ph₃P/I₂ to iodide **36** that was then displaced with excess isopropylamine at 80 °C. HATU-induced condensation of the product 37 with *n*-heptanoic acid delivered amide 42 in good overall yield. Saponification of 38, 40, and 42 afforded the corresponding free acids 5, 16, and 20, respectively.

Conclusions

Herein, we have shown N-substituted ureas, oxamides, and N-substituted amides are suitable bioisosteres for fatty acid epoxides, whereas the urethanes, triazole, 2-oxazoline, furan, and secondary amides described above are not. In concert with literature observations, secondary amides were powerful sEH inhibitors as were 1,3-disubstituted ureas if the appendages are sufficiently lipophilic. Some epoxide surrogates behaved as both good EET agonists and powerful sEH inhibitors. Overall, there was no correlation between vascular relaxation and sEHi potencies, suggesting differential structural parameters for the two pharmacophores. It is anticipated that these dual-activity analogues could function additively and provide a platform for the development of the next generation of analogues intended for in vivo applications.

Experimental Section

General Procedures. Unless stated otherwise, yields refer to purified products and are not optimized. Final compounds were judged ≥95% pure by HPLC. All moisture-sensitive reactions were performed under an argon atmosphere using oven-dried glassware and anhydrous solvents. Anhydrous solvents were freshly distilled from sodium benzophenone ketyl, except for CH₂Cl₂, which was distilled from CaH₂. Extracts were dried over anhydrous Na₂SO₄ and filtered prior to removal of all volatiles under reduced pressure. Unless otherwise noted, commercially available materials were used without purification. Silica gel chromatography was performed using E. Merck silica gel 60 (240–400 mesh). Thin layer chromatography was performed using precoated plates purchased from E. Merck (silica gel 60 F254, 0.25 mm). Nuclear magnetic resonance (NMR) splitting patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), and broad (br); the value of chemical shifts (δ) are given in ppm relative to residual solvent (chloroform $\delta = 7.27$ for ¹H NMR or $\delta = 77.23$ for proton decoupled ¹³C NMR), and coupling constants (J) are given in hertz (Hz). The Michigan State University Mass Spectroscopy Facility or Medical College of Wisconsin provided high-resolution mass spectral analyses.

Methyl 13-Hydroxytridec-8-ynoate (32). n-Butyllithium (6.2 mL of 2.5 M solution in hexanes, 15.5 mmol) was added dropwise with stirring to a -78 °C solution of non-8-ynoic acid (29) (1 g, 6.5 mmol, G. F. Smith Chem. Co.) in THF/HMPA (4:1, 50 mL) under an argon atmosphere. After 30 min, the reaction mixture was warmed to 0 °C and maintained at this temperature for 2 h. After recooling to -78 °C, a solution of 2-(4-bromobutoxy)-tetrahydro-2*H*-pyran²⁹ (30) (1.68 g, 7.14 mmol) in THF (10 mL) was added and the reaction temperature was slowly raised over 3 h to 23 °C. After 12 h, the reaction mixture was quenched with saturated aq NH₄Cl solution (5 mL) and the pH was adjusted to ~4 using 1 M oxalic acid. The mixture was extracted with EtOAc (2×50 mL), and the combined extracts were washed with water $(2 \times 10 \text{ mL})$, brine (10 mL), dried, and concentrated under reduced pressure. Crude 31 was dissolved in methanol (20 mL) to which was added p-toluenesulfonic acid (PTSA, 25 mg). After 12 h, the solvent was evaporated and the residue was purified by SiO₂ column chromatography to give 32 (700 mg, 55%) as a colorless oil. TLC: EtOAc/hexanes (1:1), $R_{\rm f} \sim 0.55$. ¹H NMR (300 MHz) δ 3.68 (s, 3H), 3.66 (t, 2H, J = 6.2 Hz), 2.31 (t, 2H, J = 7.3 Hz), 2.10-2.24 (m, 4H), 1.30-1.75 (m, 12H). ¹³C NMR (75 MHz) δ 174.55, 80.70, 80.14, 62.75, 51.73, 34.24, 32.13, 29.04, 28.84, 28.62, 25.56, 25.05, 18.85, 18.75. HRMS calcd for $C_{14}H_{25}O_3$ $[M + 1]^+$ 241.1804, found 241.1807.

Methyl 13-Hydroxytridec-8(Z)-enoate (33). NaBH₄ (16 mg, 0.416 mmol) was added in portions with vigorous stirring to a room temperature solution of Ni(OAc)₂·4H₂O (103.7 mg, 0.416 mmol) in absolute EtOH (7 mL) under a hydrogen atmosphere

(1 atm). After 15 min, freshly distilled ethylenediamine (56 μ L, 0.833 mmol) was added to the black suspension, followed after a further 15 min by a solution of 32 (400 mg, 1.66 mmmol) in absolute EtOH (2 mL). After 1 h, the reaction mixture was diluted with Et₂O (10 mL) and passed through a small bed of silica gel. The bed was rinsed with another portion of Et₂O (10 mL). The combined ethereal filtrates were concentrated under reduced pressure to afford methyl 13-hydroxytridec-8(Z)-enoate (33) (345 mg, 98%) as a colorless oil. TLC: EtOAc/hexane (1:1), $R_f \sim 0.42$. H NMR (300 MHz) $\delta 5.32 - 5.48$ (m, 2H), 3.66 (s, 3H), 3.64 (t, J = 6.5 Hz, 2H) 2.30 (t, J = 7.4, 2H), 1.96–2.10 (m, 4H), 1.54–1.66 (m, 4H), 1.20–1.44 (m, 10H). ¹³C NMR (75 MHz) δ 174.77, 130.30, 129.70, 62.95, 51.73, 34.28, 32.42, 29.64, 29.17, 29.03, 27.29, 27.10, 26.03, 25.07. HRMS calcd for $C_{14}H_{25}O_3 [M+1]^+ 243.1960$, found 243.1959.

Methyl 13-Azidotridec-8(Z)-enoate (34). Diethyl azodicaboxylate (DEAD; 243 μ L, 1.54 mmol) was added dropwise to a -20 °C solution of PPh₃ (TPP; 405 mg, 1.54 mmol) in dry THF (10 mL) under an argon atmosphere. After 10 min, alcohol 33 (340 mg, 1.4 mmol) dissolved in dry THF (5 mL) was added dropwise. After 30 min, the reaction mixture was allowed to come to 0 °C and diphenylphosphoryl azide (DPPA; 364 µL, 1.68 mmol) was added dropwise. After stirring for 4 h at rt, the reaction mixture was quenched with water (10 mL) and extracted with EtOAc ($3 \times 10 \text{ mL}$). The combined organic extracts were washed with brine (20 mL), dried, and concentrated under reduced pressure. The residue was purified by SiO2 column chromatography eluting with 5% EtOAc/hexane to afford 34 (240 mg, 65%). TLC: 10% EtOAc/hexanes, $R_{\rm f} \sim 0.45$. ¹H NMR $(300 \text{ MHz}) \delta 5.28 - 5.44 \text{ (m, 2H)}, 3.67 \text{ (s, 3H)}, 3.24 \text{ (t, } J = 7.3 \text{ Hz,}$ 2H), 2.30 (t, J = 7.2 Hz, 2H), 1.96–2.10 (m, 4H), 1.56–1.64 (m, 4H), 1.28-1.42 (m, 8H). ¹³C NMR (CDCl₃, 100 MHz) δ 174.24, 130.69, 129.17, 51.64, 51.55, 34.26, 29.66, 29.22, 29.08, 28.61, 27.33, 26.96, 26.83, 25.09. IR (neat) 2985, 2954, 2845, 2106, 1754, 1250, 1104, 1029 cm⁻¹. HRMS calcd for $C_{14}H_{25}N_3O_2$ $[M+1]^+$ 267.3672, found 267.3680.

Methyl 13-Aminotridec-8(Z)-enoate (35). Triphenylphosphine (TPP; 89 mg, 0.338 mmol) was added to a stirring, room temperature solution of azide 34 (90 mg, 0.33 mmol) in THF (2 mL) containing 4 drops of deionized water. After 12 h, the reaction mixture was diluted with CH2Cl2 (2 mL), dried, and concentrated in vacuo to give 35 (64 mg, 78%) as a viscous, colorless oil that was used directly in the next reaction without further purification. TLC: 20% MeOH/CH₂Cl₂, $R_{\rm f} \sim 0.25$. ¹H NMR (300 MHz) δ 6.22 (bs, 2H), 5.24–5.36 (m, 2H), 3.64 (s, 3H), 2.79-2.88 (m, 2H), 2.27 (t, J = 6.7 Hz, 2H), 1.92-2.08 (m, 4H), 1.53-1.68 (m, 4H), 1.21-1.44 (m, 8H). ¹³C NMR (100 MHz) δ 174.54, 130.46, 129.40, 51.69, 41.08, 34.30, 29.70, 29.25, 29.11, 27.34, 25.12, 24.83. HRMS calcd for C₁₄H₂₇NO₂ $[M+1]^+$ 241.3697, found 241.3705.

Methyl 13-(3-Pentylthioureido)tridec-8(Z)-enoate (38). A solution of amine 35 (80 mg, 0.33 mmol) in THF (3 mL) was added dropwise to a stirring, 0 °C solution of n-pentylisothiocyanate (80 mg, 0.29 mmol) in THF (4 mL). After 12 h at room temperature, all volatiles were removed under reduced pressure and the residue was purified by SiO2 column chromatography eluting with 30% EtOAc/hexane to afford **38** (90 mg, 70%) as a colorless oil. TLC: EtOAc/hexanes (1:1), $R_{\rm f}\sim 0.65$. ¹H NMR (CDCl₃, 300 MHz) δ 5.72 (br s, NH), 5.29–5.35 (m, 2H), 3.66 (s, 3H), 3.40 (br s, NH), 2.30 (t, J = 7.5 Hz, 2H), 1.97–2.05 (m, 4H), 1.57-1.64 (m, 6H), 1.26-1.42 (m, 12H), 0.88 (t, J=6.8 Hz, 3H). ¹³C NMR (75 MHz) δ 174.54, 173.75, 130.17, 129.94. 51.67, 44.68, 34.30, 29.72, 29.64, 29.21, 29.26, 29.16, 27.55, 27.35, 27.31, 25.15, 26.98, 25.13, 22.74, 14.31. HRMS calcd for $C_{20}H_{38}N_2O_2S[M+1]^+$ 371.2663, found 371.2669.

13-(3-n-Pentylthioureido)tridec-8(Z)-enoic Acid (5). LiOH (840 mL of a 1 M soln) was added to a 0 °C solution of methyl ester 38 (80 mg, 0.21 mmol) in THF/H₂O (4:1, 10 mL). After stirring at room temperature for 12 h, the THF was evaporated under reduced pressure, the remaining reaction mixture was

diluted with H₂O (5 mL), recooled to 0 °C, and the pH adjusted to 4 using 1 M oxalic acid. The reaction mixture was extracted with EtOAc (3 \times 10 mL). The combined organic extracts were washed with brine (20 mL), dried, concentrated under reduced pressure, and the residue was purified by SiO₂ column chromatography eluting with EtOAc/hexane (1:1) to afford 5 (67 mg, 87%) as a colorless oil. TLC: 60% EtOAc/hexanes, $R_{\rm f} \sim 0.35$; mp 84.4–85.2 °C. ¹H NMR (300 MHz) δ 5.28–5.36 (m, 2H), 3.38 (br s, 2H), 2.34 (t, J=7.3 Hz, 2H), 1.97-2.05 (m, 4H), 1.58-1.65 (m, 6H), 1.26–1.42 (m, 12H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz) δ 181.05, 179.53, 130.72, 129.25, 44.43, 34.15, 29.45, 29.32, 29.23, 28.92, 28.83, 28.68, 27.16, 27.03, 24.75, 22.55, 14.17. LCMS $(M + 1)^+$ 357. HRMS calcd for $C_{19}H_{36}N_2O_2S [M+1]^+$ 357.2267, found 357.2572.

Methyl 13-(2-(n-Butylamino)-2-oxoacetamido)tridec-8(Z)-enoate (39). A mixture of 2-(n-butylamino)-2-oxoacetic acid³⁰ (60 mg, 0.413 mmol), amine **35** (119 mg, 0.496 mmol), and 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU; 172 mg, 0.455 mmol) in CH₂Cl₂ (5 mL) was stirred at room temperature overnight and then all volatiles were removed in vacuo. The resultant residue was purified by SiO₂ column chromatography using 20% EtOAc/hexane as eluent to furnish oxamide 39 (112 mg, 76%) as a white solid, mp 112.5–112.9 °C. TLC: EtOAc/hexane (1:1), $R_{\rm f} \sim 0.62$. ¹H NMR (400 MHz) δ 7.42–7.67 (m, 2H), 5.23–5.42 (m, 2H), 4.07-4.14 (m, 2H), 3.65 (s, 3H), 3.25-3.38 (m, 4H), 2.28 (t, 2H, J = 7.2 Hz), 1.96–2.08 (m, 4H), 1.49–1.62 (m, 4H), 1.21–1.41 (m, 10H), 0.92 (t, 3H, J=7.1 Hz). ¹³C NMR (75 MHz) δ 174.44, 160.15, 130.57, 129.22, 51.62, 39.78, 39.59, 34.23, 31.41, 29.65, 29.20, 29.06, 28.99, 27.32, 27.08, 26.90, 25.07, 20.18, 13.85. HRMS calcd for $C_{20}H_{36}N_2O_4$ $[M + 1]^+$ 369.2753, found 369.2757.

13-(2-(n-Butylamino)-2-oxoacetamido)tridec-8(Z)-enoic acid (16). Hydrolysis of 39 (100 mg, 0.272 mmol) using LiOH as described for 38 afforded 16 (76 mg, 90%) as a white solid, mp 101.4-102.2 °C. TLC: EtOAc/hexane (1:1), $R_{\rm f} \sim 0.18$. ¹H NMR $(500 \text{ MHz}) \delta 7.94 \text{ (br s, 1H)}, 7.63 \text{ (br s, 1H)}, 5.39 - 5.30 \text{ (m, 2H)},$ 3.35-3.30 (m, 4H), 2.37 (t, 2H, J=7.3 Hz), 2.09-2.01 (m, 4H), 1.68-1.52 (m, 6H), 1.41-1.34 (m, 10 H), 0.94 (t, 3H, J=7.3 H). ¹³C NMR (125 MHz) δ 178.9, 160.1, 160.0, 130.5, 129.2, 39.8, 39.7, 34.0, 31.2, 29.4, 28.9, 28.8, 27.0, 26.9, 26.8, 24.7, 20.1, 13.8. $LC/API-MS m/z 376 [M + Na]^+$. HRMS calcd for $C_{19}H_{34}N_2O_4$ $[M + 1]^+$ 355.2597, found 355.2594.

Methyl 13-Iodotridec-8(Z)-enoate (36). tetra-n-Butylammonium iodide (941 mg, 2.58 mmol) and DDQ (1.52 g, 2.58 mmol) were added in sequence to a solution of triphenylphosphine (676 mg, 2.58 mmol) and methyl 13-hydroxytridec-8(Z)-enoate (33) (520 mg, 2.15 mmol) in dry dichloromethane (30 mL) at room temperature. After 3 h, the reaction mixture was quenched with water (2 mL) and extracted with CH_2Cl_2 (3 × 15 mL). The combined extracts were dried, concentrated under reduced pressure, and the residue was purified by SiO₂ column chromatography using 3-6% EtOAc/hexanes as eluent to give methyl 13-iodotridec-8(Z)-enoate (36) (514 mg, 83%) as a pale-yellow oil. TLC: 10% EtOAc/hexanes, $R_{\rm f} \sim 0.6$. ¹H NMR (300 MHz) δ 5.28-5.42 (m, 2H), 3.66 (s, 3H), 3.18 (t, J=7.0 Hz, 2H), 2.30 (t, J = 7.6 Hz, 2H, 1.98 - 2.08 (m, 4H), 1.79 - 1.87 (m, 2H), 1.24 -1.62 (m, 10H). ¹³C NMR (75 MHz) δ 174.46, 130.73, 129.16, 51.68, 34.28, 33.28, 30.72, 29.68, 29.25, 29.11, 27.36, 26.28, 25.12, 7.20. HRMS calcd for $C_{14}H_{25}IO_2 [M + 1]^+$ 353.1004,

Methyl 13-(Isopropylamino)tridec-8(Z)-enoate (37). Isopropylamine (418 mg, 7.10 mmol) and K₂CO₃ (596 mg, 4.26 mmol) were added sequentially to a room temperature solution of methyl 13-iodotridec-8(Z)-enoate (500 mg, 1.42 mmol) in dry tetrahydrofuran (7 mL). The mixture was heated in a sealed tube at 90 °C for 12 h and then cooled to rt, diluted with water (2 mL), filtered, and the filtrate was extracted with ethyl acetate (3 \times 15 mL). The combined organic extracts were dried, concentrated under reduced pressure, and the residue was purified by SiO₂ column chromatography using a gradient from 2 to 5% MeOH/ CH₂Cl₂ as eluent to give methyl 13-(N-isopropylamino)tridec-8(*Z*)-enoate (37) (314 mg, 78%) as a pale-yellow oil. TLC: 5% MeOH/CH₂Cl₂, $R_{\rm f}$ ~ 0.6. ¹H NMR (300 MHz) δ 5.30–5.40 (m, 2H), 3.66 (s, 3H), 2.72–2.84 (m, 1H), 2.58 (t, J = 7.2 Hz, 2H), 2.30 (t, J = 7.6 Hz, 2H), 1.98 - 2.08 (m, 4H), 1.22 - 1.68 (m, 12H),1.05 (d, J = 6.4 Hz, 6H). ¹³C NMR (75 MHz) δ 174.28, 130.57, 128.58, 51.43, 49.93, 44.69, 34.05, 29.43, 29.01, 28.87, 27.14, 26.64, 26.02, 24.86, 19.33. HRMS calcd for $C_{17}H_{33}NO_2[M+1]^+$ 284.2590, found 384.2592.

Methyl 13-(Isopropyl-n-heptanamido)tridec-8(Z)-enoate (40). Solid EDCI [1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride] (75 mg, 0.39 mmol) was added in portions to a room temperature solution of amine 37 (110 mg, 0.39 mmol), DMAP (48 mg, 0.39 mmol), and n-heptanoic acid (51 mg, 0.09 mmol) in dry DMF (3 mL). After 12 h, the reaction mixture was diluted with water (10 mL) and extracted with Et₂O (3 \times 10 mL). The combined organic extracts were washed with brine, dried, and evaporated in vacuo. The residue was purified via SiO₂ column chromatography to give methyl 13-(isopropyl-n-heptanamido)tridec-8(Z)-enoate (40) (115 mg, 77%) as a colorless oil. TLC: EtOAc/hexanes (1:1), $R_f \sim 0.6$. ¹H NMR (300 MHz, \sim 3:2 mixture of rotamers) δ 5.25–5.38 (m, 2H), 4.61–4.67 and 3.99– 4.04 (m, 1H for two rotamers), 3.66 (s, 3H), 3.04–3.13 (m, 2H), 2.20-2.36 (m, 4H), 1.90-2.06 (m, 4H), 1.20-1.64 (m, 20H), 1.15 and 1.09 (d, J = 6.7 Hz, 6H for two rotamers), 0.85 (t, J = 6.6Hz, 3H). ¹³C NMR (75 MHz) δ 176.96, 174.32, 172.76, 130.65, 129.99, 129.73, 129.04, 51.52, 48.36, 45.63, 43.54, 41.06, 34.32, 34.16, 33.94, 33.87, 31.82, 31.80, 31.63, 31.14, 29.82, 29.64, 29.58, 29.32, 29.15, 29.02, 27.71, 27.38, 27.31, 27.24, 27.08, 26.83, 25.84, 25.68, 25.03, 22.68, 22.62, 21.49, 20.61, 14.18. HRMS calcd for $C_{24}H_{45}NO_3$ [M + 1]⁺ 396.3478, found 396.3475.

13-(N-Isopropylheptanamido)tridec-8(Z)-enoic acid (20). Hydrolysis of 40 using LiOH as described for 38 afforded 20 (92%) as a colorless oil. TLC: 75% EtOAc/hexanes, $R_{\rm f} \sim 0.40$. ¹H NMR (300 MHz, mixture of rotamers) δ 5.25-5.39 (m, 2H), 4.63-4.68 and 4.02-4.07 (m, 1H for two rotamers in 55/45 ratio), 3.06-3.11 (m, 2H), 2.23-2.36 (m, 4H), 1.98-2.06 (m, 4H), 1.20-1.71 (m, 20H), 1.18 and 1.11 (d, J = 7.0 Hz, 6H for two rotamers in 55/45 ratio), 0.87 (t, J = 6.7 Hz, 3H). ¹³C NMR (75 MHz) δ 179.00, 178.24, 173.51, 173.08, 130.81, 130.08, 129.95, 129.95, 129.15, 48.57, 45.66, 43.61, 41.26, 34.36, 34.28, 34.23, 34.10, 31.92, 31.86, 31.66, 31.26, 29.67, 29.60, 29.44, 29.40, 29.31, 29.17, 29.10, 28.97, 28.85, 28.49, 27.93, 27.47, 27.40, 27.32, 26.94, 26.81, 25.81, 25.93, 25.75, 24.99, 24.9, 22.78, 21.54, 20.75, 14.29. ESI-LC/MS m/z 380 (M - H)⁺. HRMS calcd for $C_{23}H_{43}NO_3$ [M + 1]⁺ 382.3321, found 382.3324.

Bioassays. The influence of eicosanoids and analogues on coronary vascular tone was measured by the induced changes in isometric tension of bovine coronary artery rings precontracted with the thromboxane-mimetic, U46619, as previously described. 18a,31 Synthetic 14,15-EET was used as a control. All assays were conducted in triplicate or greater and are means $\pm 10\%$ SD of the reported value.

Recombinant human sEH was produced in a baculovirus expression system³² and was purified by affinity chromatography. ³³ Inhibition potencies (IC₅₀s) were determined using a fluorescent-based assay. ³⁴ Human sEH (\sim 1 nM) was incubated with inhibitors (0.4 < [I]_{final} < 100000 nM) for 5 min in 25 mM bis-tris/HCl buffer (200 mL, pH 7.0) at 30 °C before the substrate, cyano(2-methoxynaphthalen-6-yl)methyl trans-(3phenyl-oxyyran-2-yl]methyl carbonate (CMNPC; [S]_{final} = $5 \mu M$), was added. Activity was assessed by measuring the appearance of the fluorescent 6-methoxynaphthaldehyde product $(\lambda_{\rm em} = 330 \text{ nm}, \lambda_{\rm ex} = 465 \text{ nm})$ at 30 °C during a 10 min incubation (Spectramax M2, Molecular Device, Inc., Sunnyvale, CA).34 IC₅₀s refer to the concentrations of inhibitor that reduced activity by 50% and are the averages of three replicates.

Acknowledgment. Financial support provided in part by NIH (GM32178, DK38226, HL51055, HL85727), NIEHS (R37 ES02710, RO1 13833), NIH/NIEHS (ES04699), and the Robert A. Welch Foundation.

Supporting Information Available: Experimental procedures and copies of the ${}^{1}H/{}^{13}C$ NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) (a) Capdevila, J. H.; Falck, J. R.; Imig, J. D. Roles of the Cytochrome Arachidonic Acid Monooxygenases in the Control of Systemic Blood Pressure and Experimental Hypertension. *Kidnev Int.* 2007, 72, 683–689. (b) Moran, J. H.; Mitchell, L. A.; Bradbury, J. A.; Qu, W.; Zeldin, D. C.; Schnellmann, R. G.; Grant, D. F. Analysis of the Cytotoxic Properties of Linoleic Acid Metabolites Produced by Renal and Hepatic P450s. *Toxicol. Appl. Pharmacol.* 2000, 168, 268–279. (c) Fer, M.; Dreano, Y.; Lucas, D.; Corcos, L.; Salauen, J.-P.; Berthou, F.; Amet, Y. Metabolism of Eicosapentaenoic and Docosahexaenoic acids by Recombinant Human Cytochromes P450. *Arch. Biochem. Biophys.* 2008, 471, 116–125. (d) Barbosa-Sicard, E.; Markovic, M.; Honeck, H.; Christ, B.; Muller, D. N.; Schunck, W.-H. Eicosapentaenoic Acid Metabolism by Cytochrome P450 Enzymes of the CYP2C Subfamily. *Biochem. Biophys. Res. Commun.* 2005, 329, 1275–1281. (e) Yi, X.-Y.; Gauthier, K. M.; Cui, L.; Nithipatikom, K.; Falck, J. R.; Campbell, W. B. Metabolism of Adrenic Acid to Vasodilatory 1α,1β-Dihomo-epoxyeicosatrienoic Acids by Bovine Coronary Arteries. *Am. J. Physiol.* 2007, 292, H2265–H2274.
- (2) Reviews: (a) Fleming, I. Vascular Cytochrome P450 Enzymes: Physiology and Pathophysiology. <u>Trends Cardiovasc. Med.</u> 2008, 18, 20–25. (b) Spector, A. A.; Norris, A. W. Action of Epoxyeicosatrienoic Acids on Cellular Function. <u>Am. J. Physiol.</u> 2007, 292, C996—C1012. (c) Capdevila, J. H.; Falck, J. R.; Harris, R. C. Cytochrome P450 and Arachidonic Acid Bioactivation: Molecular and Functional Properties of the Arachidonate Monooxygenase. <u>J. Lipid Res.</u> 2000, 41, 163–181.
- (3) Li, P.-L.; Campbell, W. B. Epoxyeicosatrienoic Acids Activate K+ Channels in Coronary Smooth Muscle Through a Guanine Nucleotide Binding Protein. Circ. Res. 1997, 80, 877–884.
- cleotide Binding Protein. *Circ. Res.* **1997**, *80*, 877–884.

 (4) Yang, W.; Holmes, B. B.; Gopal, V. R.; Kishore, R. V. K.; Sangras, B.; Yi, X.-Y.; Falck, J. R.; Campbell, W. B. Characterization of 14,15-Epoxyeicosatrienoic Acid Agonists: Use for Studies of Metabolism and Ligand Binding. *J. Pharm. Exp. Ther.* **2007**, *321*, 1023–1031.

 (5) Wong, P. Y.; Lin, K. T.; Yan, Y. T.; Ahern, D.; Iles, J.; Shen, S. Y.;
- (5) Wong, P. Y.; Lin, K. T.; Yan, Y. T.; Ahern, D.; Iles, J.; Shen, S. Y.; Bhatt, R. K.; Falck, J. R. 14(R),15(S)-Epoxyeicosatrienoic Acid (14(R),15(S)-EET) Receptor in Guinea Pig Mononuclear Cell Membranes. J. Lipid Mediators 1993, 6, 199–208.
- (6) Yang, W.; Tuniki, V. R.; Anjaiah, S.; Falck, J. R.; Hillard, C. J.; Campbell, W. B. Characterization of Epoxyeicosatrienoic Acid Binding Site in U937 Membranes Using a Novel Radiolabeled Agonist, 20-¹²⁵l-14,15-Epoxyeicosa-8(Z)-Enoic Acid. <u>J. Pharm. Exp. Ther.</u> 2008, 324, 1019–1027.
- (7) Interactions of EETs with known receptors and binding sites have been reported, but none fully account for the physiological effects of EETs: (a) Behm, D. J.; Ogbonna, A.; Wu, C.; Burns-Kurtis, C. L.; Douglas, S. A. Epoxyeicosatrienoic Acids Function as Selective, Endogenous Antagonists of Native Thromboxane Receptors: Identification of a Novel Mechanism of Vasodilation. *J. Pharmacol. Exp. Ther.* 2009, 328, 231–239. (b) Wang, X.-L.; Lu, T.; Cao, S.; Shah, V. H.; Lee, H.-C. Inhibition of ATP Binding to the Carboxyl Terminus of Kir6.2 by Epoxyeicosatrienoic Acids. *Biochim. Biophys. Acta* 2006, 1761, 1041–1049. (c) Watanabe, H.; Vriens, J.; Prenen, J.; Droogmans, G.; Voets, T.; Nilius, B. Anandamide and Arachidonic Acid Use Epoxyeicosatrienoic Acids to Activate TRPV4 Channels. *Nature* 2003, 424, 434–438.
- (8) (a) Fitzpatrick, F. A. The Stability of Eicosanoids: Analytical Consequences. *Dev. Pharm.* 1980, 1, 189–201. (b) Fiore, S.; Serhan, C. N. Phospholipid Bilayers Enhance the Stability of Leukotriene A₄ and Epoxytetraenes: Stabilization of Eicosanoids by Liposomes. *Bio-chem. Biophys. Res. Commun.* 1989, 159, 477–481.
- chem. Biophys. Res. Commun. 1989, 159, 477–481.
 (9) Falck, J. R.; Yadagiri, P.; Capdevila, J. Synthesis of Epoxyeicosatrienoic Acids and Heteroatom Analogs. In Methods in Enzymology, Vol. 187; Murphy. R. C., Fitzpatrick, F. A., Eds.; Academic Press, Inc.: San Diego, 1990; pp 357–364.
- (10) (a) Capdevila, J. H.; Mosset, P.; Yadagiri, P.; Lumin, S.; Falck, J. R. NADPH- Dependent Microsomal Metabolism of 14,15-Epoxyeicosatrienoic Acid to Diepoxides and Epoxyalcohols. <u>Arch.</u>

- <u>Biochem. Biophys.</u> **1988**, *261*, 122–133. (b) Le Quere, V.; Plee-Gautier, E.; Potin, P.; Madec, S.; Salaun, J.-P. Human CYP4F3s are the Main Catalysts in the Oxidation of Fatty Acid Epoxides. <u>J. Lipid Res.</u> **2004**, *45*, 1446–1458.
- (11) (a) Capdevila, J. H.; Kishore, V.; Dishman, E.; Blair, I. A.; Falck, J. R. A Novel Pool of Rat Liver Inositol and Ethanolamine Phospholipids Contains Epoxyeicosatrienoic Acids (EETs). Biochem. Biophys. Res. Commun. 1987, 146, 638–644. (b) Karara, A.; Dishman, E.; Falck, J. R.; Capdevila, J. H. Endogenous Epoxyeicosatrienoyl-phospholipids. A Novel Class of Cellular Glycerolipids Containing Epoxidized Arachidonate Moieties. J. Biol. Chem. 1999, 266, 7561–7569. (c) Chen, J.; Chen, J.-K.; Falck, J. R.; Anjaiah, S.; Capdevila, J. H.; Harris, R. C. Mitogenic Activity and Signaling Mechanism of 2-(14,15-Epoxyeicosatrienoyl)glycerol, a Novel Cytochrome P450 Arachidonate Metabolite. Mol. Cell. Biol. 2007, 27, 3023–3034.
- (12) Spearman, M. E.; Prough, R. A.; Estabrook, R. W.; Falck, J. R.; Manna, S.; Leibman, K. C.; Murphy, R. C.; Capdevila, J. Novel Glutathione Conjugates formed from Epoxyeicosatrienoic Acids (EETs). *Arch. Biochem. Biophys.* 1985, 242, 225–230.
 (13) Fang, X.; Weintraub, N. L.; Oltman, C. L.; Stoll, L. L.; Kaduce, T. L.;
- (13) Fang, X.; Weintraub, N. L.; Oltman, C. L.; Stoll, L. L.; Kaduce, T. L.; Harmon, S.; Dellsperger, K. C.; Morisseau, C.; Hammock, B. D.; Spector, A. A. Human Coronary Endothelial Cells Convert 14,15-EET to a Biologically Active Chain-Shortened Epoxide. <u>Am. J.</u> <u>Physiol.</u> 2002, 283, H2306–H2314.
- (14) Chacos, N.; Capdevila, J.; Falck, J. R.; Manna, S.; Martin-Wixtrom, C.; Gill, S. S.; Hammock, B. D.; Estabrook, R. W. The Reaction of Arachidonic Acid Epoxides (Epoxyeicosatrienoic Acids) with a Cytosolic Epoxide Hydrolase. <u>Arch. Biochem. Biophys.</u> 1983, 223, 639–648.
- (15) Kim, I.-H.; Heirtzler, F. R.; Morisseau, C.; Nishi, K.; Tsai, H.-J.; Hammock, B. D. Optimization of Amide-Based Inhibitors of Soluble Epoxide Hydrolase with Improved Water Solubility. <u>J. Med. Chem.</u> 2005, 48, 3621–3629.
 (16) Catella, F.; Lawson, J. A.; Fitzgerald, D. J.; FitzGerald, G. A.
- (16) Catella, F.; Lawson, J. A.; Fitzgerald, D. J.; FitzGerald, G. A. Endogenous Biosynthesis of Arachidonic Acid Epoxides in Humans: Increased Formation in Pregnancy-Induced Hypertension. *Proc. Nat. Acad. Sci. U.S.A.* 1990, 87, 5893–5897.
 (17) Yin, H.; Porter, N. A. New Insights Regarding the Autoxidation of
- (17) Yin, H.; Porter, N. A. New Insights Regarding the Autoxidation of Polyunsaturated Fatty Acids. <u>Antioxid. Redox Signaling</u> 2005, 7, 170–184.
- (18) (a) Gauthier, K. M.; Deeter, C.; Krishna, U. M.; Reddy, Y. K.; Bondlela, M.; Falck, J. R.; Campbell, W. B. 14,15-Epoxyeicosa-5(Z)-Enoic Acid: A Selective Epoxyeicosatrienoic Acid Antagonist That Inhibits Endothelium-Dependent Hyperpolarization and Relaxation in Coronary Arteries. <u>Circ. Res.</u> 2002, 90, 1028–1036. (b) Falck, J. R.; Krishna, U. M.; Reddy, Y. K.; Kumar, P. S.; Reddy, K. M.; Hittner, S. B.; Deeter, C.; Sharma, K. K.; Gauthier, K. M.; Campbell, W. B. Comparison of Vasodilatory Properties of 14,15-EET Analogs: Structural Requirements for Dilation. *Am. J. Physiol.* **2003**, 284, H337–H349. (c) Gauthier, K. M.; Jagadeesh, S. G.; Falck, J. R.; Campbell, W. B. 14,15-Epoxyeicosa-5(Z)-enoic-mSI: A 14,15- and 5,6-EET Antagonist in Bovine Coronary Arteries. Hypertension 2003, 42, 555–561. (d) Gauthier, K. M.; Falck, J. R.; Reddy, L. M.; Campbell, W. B. 14.15-EET Analogs: Characterization of Structural Requirements for Agonist and Antagonist Activity in Bovine Coronary Arteries. *Pharm. Res.* 2004, 49, 515–524. (e) Yang, W.; Holmes, B. B.; Gopal, V. R.; Kishore, R. V. K.; Sangras, B.; Yi, X.-Y.; Falck, J. R.; Campbell, W. B. Characterization of 14,15-Epoxyeicosatrienoyl-Sulfonamides as 14,15-Epoxyeicosatrienoic Acid Agonists: Use for Studies of Metabolism and Ligand Binding. J. Pharmacol. Exp. Ther. 2007, 321, 1023-1031
- (19) For 11,12-EET analogs, see: (a) Falck, J. R.; Reddy, L. M.; Reddy, Y. K.; Bondlela, M.; Krishna, U. M.; Ji, Y.; Sun, J.; Liao, J. K. 11,12-Epoxyeicosatrienoic Acid (11,12-EET): Structural Determinants for Inhibition of TNF-α-Induced VCAM-1 Expression. Bioorg. Med. Chem. Lett. 2003, 13, 4011–4014. (b) Dimitropoulou, C.; West, L.; Field, M. B.; White, R. E.; Reddy, L. M.; Falck, J. R.; Imig, J. D. Protein Phosphatase 2A and Ca²⁺-Activated K⁺ Channels Contribute to 11,12-Epoxyeicosatrienoic Acid Analog Mediated Mesenteric Arterial Relaxation. Prostaglandins Other Lipid Mediators 2007, 83, 50–61. (c) Imig, J. D.; Dimitropoulou, C.; Reddy, D. S.; White, R. E.; Falck, J. R. Afferent Arteriolar Dilation to 11,12-EET Analogs Involves PP2A Activity and Ca²⁺-Activated K⁺ Channels. Microcirculation 2008, 15, 37–150. (d) For 5,6-EET, see: Yang, W.; Reddy, L. M.; Sangras, B.; Sharma, K. K.; Nithipatikom, K.; Falck, J. R.; Campbell, W. B. Stable 5,6-Epoxyeicosatrienoic Acid Analog Relaxes Coronary Arteries through Potassium Channel Activation. Hypertension 2005, 45, 681–686.
- (20) Morisseau, C.; Goodrow, M. H.; Dowdy, D.; Zheng, J.; Greene, J. F.; Sanborn, J. R.; Hammock, B. D. Potent Urea and Carbamate Inhibitors of Soluble Epoxide Hydrolases. <u>Proc. Natl. Acad. Sci. U.</u> <u>S.A.</u> 1999, 96, 8849–8854.

- (21) sEH inhibitors may also have direct effects upon vascular tissue: Olearczyk, J. J.; Field, M. B.; Kim, I.-H.; Morisseau, C.; Hammock, B. D.; Imig, J. D. Substituted Adamantyl-Urea Inhibitors of the Soluble Epoxide Hydrolase Dilate Mesenteric Resistance Vessels. J. Pharmacol. Exp. Ther. 2006, 318, 1307–1314.
- (22) Other functionality may also be useful for sEHi: Anandan, S.-K.; Do, Z. N.; Webb, H. K.; Patel, D. V.; Gless, R. D. Non-Urea Functionality as the Primary Pharmacophore in Soluble Epoxide Hydrolase Inhibitors. *Bioorg. Med. Chem. Lett.* 2009, *19*, 1066–1070.
 (23) Wermuth, C. G.; de la Fontaine, J. Molecular Variations Based on
- (23) Wermuth, C. G.; de la Fontaine, J. Molecular Variations Based on Isosteric Replacements. In <u>Practice of Medicinal Chemistry</u>, 2nd ed.; Wermuth, C. G., Eds.; Elsevier: London, 2003; pp 189–214.
- (24) Examples of other epoxide mimics: (a) Prestwich, G. D.; Kuo, J. W.; Park, S. K.; Loury, D. N.; Hammock, B. D. Inhibition of Epoxide Metabolism by α,β-Epoxyketones and Isosteric Analogs. Arch. Biochem. Biophys. 1985, 242, 11–15. (b) Van Duuren, B. L.; Melchionne, S.; Blair, R.; Goldschmidt, B. M.; Katz, C. Carcinogenicity of Isosteres of Epoxides and Lactones: Aziridine Ethanol, Propane Sultone, and Related Compounds. J. Natl. Cancer Inst. 1971, 46, 143–149. (c) Regueiro-Ren, A.; Borzilleri, R. M.; Zheng, X.; Kim, S. H.; Johnson, J. A.; Fairchild, C. R.; Lee, F. Y.; Long, B. H.; Vite, G. D. Synthesis and Biological Activity of Novel Epothilone Aziridines. Org. Lett. 2001, 3, 2693–2696.
- (25) Microsomal epoxide hydrolase (mSH) is also blocked by ureas and related functionality: Morisseau, C.; Newman, J. W.; Dowdy, D. L.; Goodrow, M. H.; Hammock, B. D. Inhibition of Microsomal Epoxide Hydrolases by Ureas, Amides, and Amines. <u>Chem. Res.</u> <u>Toxicol.</u> 2001, 14, 409–415.
- (26) Nelson, M. J.; Seitz, S. P.; Cowling, R. A. Enzyme-Bound Pentadienyl and Peroxyl Radicals in Purple Lipoxygenase. <u>Biochem.</u> 1990, 29, 6897–6903.

- (27) For early indications that lipophilic ureas might also harbor EET mimetic properties, see: Olearczyk, J. J.; Field, M. B.; Kim, I. H.; Morisseau, C.; Hammock, B. D.; Imig, J. D. Substituted Adamantyl-Urea Inhibitors of Soluble Epoxide Hydrolase Dilate Mesenteric Resistance Vessels. <u>J. Pharmacol. Exp. Ther.</u> 2006, 318, 1307–1314
- (28) Rousseau, G.; Strzalko, T.; Roux, M.-C. Preparation of Large Ring Acetylenic Lactones by Iodolactonization. <u>Tetrahedron Lett.</u> 2004. 45. 4503–4505.
- (29) Ochiai, M.; Sueda, Takuya. Tetrahydrofuranylation of Alcohols Catalyzed by Alkylperoxy-13-iodane and Carbon Tetrachloride. <u>Tetrahedron. Lett.</u> 2004, 45, 3557–3559.
- (30) Yu, Y.; Deck, J. A.; Hunsaker, L. A.; Deck, L. M.; Royer, R. E.; Goldberg, E.; Vander Jagt, D. L. Selective Active Site Inhibitors of Human Lactate Dehydrogenases A₄, B₄, and C₄. <u>Biochem. Phar-macol</u>. 2001, 62, 81–89.
- (31) Pratt, P. F.; Falck, J. R.; Reddy, K. M.; Kurian, J. B.; Campbell, W. B. 20-HETE Relaxes Bovine Coronary Arteries Through the Release of Prostacyclin. <u>Hypertension</u> 1998, 31, 237–241.
- (32) Beetham, J. K.; Tian, T.; Hammock, B. D. cDNA Cloning and Expression of a Soluble Epoxide Hydrolase from Human Liver. *Arch. Biochem. Biophys.* 1993, 305, 197–201.
 (33) Wixtrom, R. N.; Silva, M. H.; Hammock, B. D. Affinity Purifi-
- (33) Wixtrom, R. N.; Silva, M. H.; Hammock, B. D. Affinity Purification of Cytosolic Epoxide Hydrolase using Derivatized Epoxy-Activated Sepharose Gels. <u>Anal. Biochem.</u> 1988, 169, 71–80.
- (34) Jones, P. D.; Wolf, N. M.; Morisseau, C.; Whetstone, P.; Hock, B.; Hammock, B. D. Fluorescent Substrates for Soluble Epoxide Hydrolase and Application to Inhibition Studies. <u>Anal. Biochem.</u> 2005, 343, 66–75.